
TWO SAMPLE PROBLEMS 
FOR A DICHOTOMOUS VARIABLE WITH MISSING DATA 
Janet Dixon Elashoff, Stanford University 

amd Robert M. Elashoff, University of California, San Francisco 

Introduction. Incomplete or missing data is 
a major problem in many fields. Data may be in- 
complete due to subject nonresponse or refusal to 
cooperate, transcription errors, random loss, or 
to a variety of other reasons. As a consequence, 
statistical techniques to deal with incomplete 
data are necessary. One common approach is sim- 
ply to delete and ignore the incomplete cases. To 
select an appropriate technique, however, some - 

must be known about the kind of observations 
missing and the variables influencing 

the loss of certain observations. 
Two sample problems with binary data are con- 

sidered in this study. These problems are formu- 
lated in section 2 along with specific probability 
models to describe the missing observations. In 
later sections, we describe and explain the diffi- 
culties encountered in parameter estimation for 
the sampled populations, discuss estimation and 
tests for differences and ratios of the parameters, 
and give recommendations for data analysis. 

Problem formulation, Models, Notation. Many 
studies to compare the effectiveness of different 
treatments have nonrespondents. For example, sup- 
pose patients with a certain disease are assigned 
either an active drug (x = 2) or a placebo (x = 1) 

in a double blind study. The placebo has the same 
side effects as the active drug, but presumably it 
does not have the same curative or palliative ef- 
fect as the active drug. A follow -up study is 
made and each patient is scored as improved (y = 1) 

or unimproved (y = 0) on a response variable y. 
Lack of improvement may cause some patients to drop 
out of the study or refuse to cooperate further. 
Improvement also may give patients a reason to drop 
out or a chance to leave the area. In either case 
the y measurements are unknown. Clearly, under 
these circumstances, a missing y may be influenced 
by whether or not the patient is improved but not 
directly by the drug the patient received. The 
goal of the clinical study is to compare the prob- 
ability of improvement for the active drug (p2) 

with the probability of improvement for the place- 
bo (p1). 

A statistical model for such problems is de- 

fined in this way. A random sample of i = 1, 

2, individuals is given treatment x = i, and 

of these individuals are observed on the binary re- 
sponse variable y. No measurement error exists. 
Denote by pi the probability that y 1 when x = i. 

The value of x is known for each of the (N1 + N2) 

individuals. Define 
q(x,y) P(an individual's y is recordedlx,y). 

We can distinguish four particular specifications 
of q(x,y): 

(1) q(x,y) = q, 
the missing data occur at random; 

(2) q(x,y) = 

the probability of missing data depends on an indi- 
vidual's y value but not his x value; 

(3) q(x,y) - 
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the probability that an individual's score is 
recorded depends only on the population he is 
from; or 

(4) q(x,y) = q xy 
the general case where the probability of missing 
data depends on both x and y. 

The second specification, case 2, is more 
appropriate for problems like the drug example 
described above. We investigate the question of 
how much it matters whether we base our statis- 
tical analysis on case 1 or case 2. 

Our goals are to estimate the population 
quantities pl and p2, to estimate the comparative 
population measures 

1. D- -p2, 

2. R = pl /p2, 

pl /(l -p1) 
3. OR p2/(1-p2) 

and to propose significance tests and confidence 
intervals for these three population measures. 

Under cases 1 and 3, standard estimators and 
inference procedures for pl, p2, D, R, and OR may 

be usei conditional on the observed sample sizes, 
n1 and n2. Under case 4, there is insufficient 

information to estimate pl and p2 or the functions 

D, R, or OR since only 4 of the 6 parameters can 
be estimated from the data. Our study investi- 
gates the maximum likelihood estimators for the 
parameters pi, D, R, and OR under case 2, examines 
asymptotic and small sample results for condition- 
al and unconditional means, variances, and mean 
squared errors of the estimators, and compares 
their behavior to that of case 1 estimators. 

Estimation of the pi. Under case 1, when 

q(x,y) = q, and the missing observations occur at 
random, the (Ni - ni) missing observations can be 

ignored and the remaining observations regarded as 
random samples of size ni. Let ri be the number 

of individuals for whom y 1 out of the ni actu- 

ally observed in population i. Then the ml esti- 
mators of pl, p2, and q are 

(5) = ri /ni 

(6) 4 - (n1 + n2) /(N1 + N2). 

Standard distribution theory applies to these esti- 
mators. 

When q(x,y) = and case 2 holds, the 

estimators are derived by the following argument. 
Let 

al a2 - g1p2; 

ßl q0(1 -p1), 82 q0(1 -p2). 

Then, the likelihood of the two samples becomes 

2 
r (n -r (N -n ) 

(8) L= C i i i 
i =1 



After differentiating L with respect to the ai and 

ßi and setting the resulting equations to zero, we 

find 

(9) ai = ri /Ni, (ni- ri) /Ni. i = 1, 2. 

Since the parameter set (al, a2, is a one - 

to -one transformation of (p1, p2, ql, q0) 
when 

pl # p2 
and neither ql nor q0 equal to zero, the 

ml estimators of pi, 
q0, q1 can be obtained from 

equations (7) and (9) as 

Pli (ri/N.) r1) -N1(n2 r2)J(nlr2 r1n2) 

(10) = (n1r2 n2r1) /(N1r2 N2r1) 

= (n1r2 n2r1) /(N2(nl r1) -N1(n2 r2)). 
We note that these estimators of 

pl, p2, q1, q0 
break down when pl = p2. Clearly, when 

we have only a single sample from which it is im- 
possible to obtain even a consistent estimator of 
p under case 2. Mathematically, when 

then al = a2 a and = 
2 

= and although ml 

estimators of a and ß, or q1p and q0(1 -p), exist 

the parameter set (a,ß) is not a one -to -one trans- 
formation of (p, q0, ql) and ml estimators for 

p, q0 do not exist. 
In practice, additional difficulties arise 

with the use of this estimation method even 
when ̂p1 # p2. Samples in which < 1 and 

/132) < 
1 or in which both ratios are greater 

than one lead to some of the (pl, 
p2, 

being negative. This situation not infrequently 
occurs when pl is close to p2 or the ni are small. 

Such a difficulty implies that the ml estimators 
are not very precisely determined. If we con- 
strained the , ßi so that the preceding inequal- 
ities would not occur, we would essentially be 
setting pl = p2 in which case p cannot be esti- 

mated. 
Under case 2 where q(x,y) = both pli and 

pli 
have asymptotic normal distributions for 

pl p2. The mean of pli is which equals 

+ (1- pi)(10) and the asymptotic mean of 

pli 
is pi. The asymptotic conditional and uncon- 

ditional variances of pli and are given in 

Elashoff and Elashoff (1971). The asymptotic 
variance formulas for pli contain the term 

in the denominator indicating that for 

small the variance of pli will be large. 

For tests of the null hypothesis HO 
: pl p2 

under cases 1 or 2 el - 02 if and only if pl 
= p2 

(for neither q0 = 0 or ql = 0), and thus a test of 

pl = p2 
may be carried out by standard methods 

such as the Fisher -Irwin test conditional on 
nl, n2, and r1 + r2. 
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Estimation of D, R, and OR. The population 
measures D, R, and OR, or log OR are frequently 
used quantities for comparing pl and p2. In this 

section we discuss their estimation when q(x,y) =qy. 

Although inferences about D, R, or OR will usual- 
ly be based on conditional variance formulas, a 
detailed numerical study of asymptotic formulas 
and small sample behavior conditional on possible 
n1 and n2 pairs is unwieldy and consequently dis- 

cussions will focus on unconditional results. To 
evaluate the usefulness of asymptotic formulas for 
comparisons and to examine the behavior of the 
estimators in small samples, exact unconditional 
means and variances were calculated. For example, 
the exact mean of D1 is 

N 

P(r1)P(r2)P(n1)p(n2) 
(11) 

n r 
D1 1- P{n1=0 or n2=0} 

2= 1 
-1 r2 

1 

where 
r (ni ri) 

p (r1) ' i (1 -9i) and p (ni) = 

(1- 
ni) 

Note that results were obtained conditional on 
0, and n2 0 and that for n1r2 = n2r1 we 

defined O. Calculations were made for N 
1 
=N 

2 
= 

20, 50, for pl, p2 = .10, .25, .50, .75, .90 and 

= .50, .75, .90, 1.0. Summary results may 

be found in Elashoff and Elashoff (1971). 
Estimators for D are obtained by substitution 

of or 62i in D = (p1 -1 p2) and are given by 

(12) D1 = - 
1 2/ 

for case 1, and 

r1 r2 N2(n1 - r1) - N1(n2 - r2) 

(13) 
D2 

N1 N2 
(nlr2 

- n2r1) 

for case 2, when pl 
# p2. 

Both D1 and D2 have asymptotic normal distribu- 

tions under case 2. Asymptotic conditional and 

unconditional means and variances are given in 
Elashoff and Elashoff (1971). 
The estimator D2 does not exist when pl p2; the 

presence of the term (02 -01)4 in the denominator 

of the conditional variance of D2 demonstrates 

that D2 will have a large variance when p1 is near 

p2. 62 is a consistent estimator of D while D1 

is not consistent unless ql = q0 or pl p2; the 

bias in D1 is (e1 -1 -e 
2 
) 
- 

(p 
1-p 2 

) independent of N. 

Examination of unconditional asymptotiR and 

small sample results indicate that neither D1 nor 

D2 provides a good estimate of D in general. Un- 

less ql = q0 or pl p2, 
may have considerable 

bias, and unless N1p1 
-p21 

is large D2 has a rela- 

tively large variance. 



In small samples, 82 is biased; both the bias 

and the variance of D2 decrease as N increases, so 

for sufficiently large N, mse(62) < mse(81) unless 

pi - = q0. We note however that for 

Ni - N2 = 50, mse62) < only for > 

.4 and large. 

Let us now consider the estimation of R. 
Maximum likelihood estimators for R = are 

(14) - r1 n2 

and 

(15) R2 = 

21 
for cases 1 and 2, respectively. Under case 2, 

R1 and R2 have asymptotic normal distributions 

with means and conditional and unconditional vari- 
ances as given in Elashoff and Elashoff (1971). 

The estimator is consistent if and only if 

ql - q0 
or pl = p2, otherwise the bias is 

81 

(16) bias al) = (q1-q0) (P2- , 

R2 is consistent. Note that the ratio of the 

asymptotic conditional variances, var /var 82, 

equals 

(T2) ( 
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1 

which should approach 
p2g1 + (1 -p2)g0 2 

(1- 

for large N. Thus var /var 82 < 1 for 

(q1 - q0)(p2 - pl) < 0 or (q1 - q0) (1 - R) < 0. 

The ratio of asymptotic unconditional variances 
varies with (q1 - 

q0)(p2 
- pl) 

in a similar way 

but is generally smaller than the ratio of condi- 
tional variances. 

Asymptotic unconditional formulas for the 
mean squared errors of R1 and R2 were compared for 

N 200 for the parameter sets defined earlier. 
Except for cases where ql - q0 or pl - p2, when 

R1 is unbiased, /mse(R2) was generally 

greater than .84 and frequently greater than 1.0, 
which suggests that use of prove general- 

ly satiafaRtory in large samples. 
Both R1 and R2 are biased in small samples. 

The bias in R2 is independent of pl and decreases 

slowly with increasing N and increasing ql (it is 

almost unaffected by q ). The range of percentage 
bias in R1 is similar fo that of R2 when ql 

- q0 
but generally larger when ql # q0. For investi- 

gators interested in using the estimator can 

be corrected for bias using standard methods. 
Comparisons of exact mean squared errors for 

81 and when N - 20 and N 50 demonstrate that 
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asymptotic formulas provide good indications of 
the size of mse(Rl) /mse(82) in small samples. The 

ratios of exact to asymptotic unconditional vari- 
ances are quite similar for and The exact 

variances are generally larger than the asymptotic 
variance formulas for both R1 and. except for 

pl = p2 
and N 20; for N 50, the ratios vary 

from 1.0 to 3.7, being close to 1.0 for R < 1.0 
and larger for R > 1.0. 

On the whole then, 82 should provide a rea- 

sonable estimator of R for N not too small. 
The estimators of OR for case 1 and case 2 

both reduce to 

(17) OR r1(n2 - r2) 
r2(n1 - 

This estimator is asymptotically unbiased under 
both cases. The asymptotic conditional and un- 
conditional variances of A-771-. OR under case 2 

are given in Elashoff and Elashoff (1971). 
The independence of the form of the estimator 

from q(x,y) suggests that the use of OR will be 
robust to q(x,y). Although asymptotically un- 
biased, may have a substantial bias for 
N1 N2 20. Generally the bias is of the order 

of 20% to 50% of OR, although it does not contrib- 
ute appreciably to the mean square error. The be- 
havior of OR in small samples does not seem to de- 
pend particularly on 'pi - p2I or 

Iq1 
- For 

N1 N2 = 20, the exact variance may be from 2 to 

5 times larger than the asymptotic variance for 
the parameter sets investigated. 

To estimate OR, OR (or a modification to re- 
duce bias) can be used for either case 1 or 2. 
Uniformly most- accurate confidence intervals can 
be constructed for OR using the noncentral dis- 
tribution of r1, r2 conditional on (r1 + r2), 

N1, N2 (see Lehmann, 1959). This noncentral dis- 

tribution is the same for both cases. 
Some authors prefer log OR to OR. Of course 

the estimator of log OR has the same property of 
invariance under cases 1, 2, and 3 as does the 
estimator of OR. Haldane (1955), Anscombe (1956) 
and Gart and Zwiefel (1967) have recommended the 

substitution of pi + for and (1 -pi) + i 
for (1 -pi) to reduce the bias of the estimator of 

the logit. This would result in the estimator 
(rl + 1/2)(n2 - r2 + 1/2) 

(18) log - log + 1 /2)(n1 - r1 + 1/2) 

Uniformly most accurate confidence intervals for 
log OR could be constructed in the same way as for 
OR. 

Conclusions. We have studied two -sample pro- 
blems with dichotomous data in which the probabil- 
ity that an individual score will be missing de- 
pends on the value of that score. 

Estimation of the pi and ql, q0 and estima- 

tion of D - pl - p2 break down unless p21 is 

large. The case 2 estimator of R does not perform 



especially well for NIp1 small. This suggests 

preceding attempts to estimate D or R by a test of 

H0 : pl p2, since conditional upon nl, n2, and 

r1 + r2 such a test may be carried out by standard 

methods even when case 2 holds. Alternatively, 
since the estimator of OR is the same under cases 
1 and 2, estimation of OR or log OR rather than of 
D or R should be considered when more than a small 
fraction of the data is missing. 
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